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Abstract—Real-time electricity prices are economic signals in-
centivizing market players to support real-time system balancing.
These price signals typically switch between low- and high-price
regimes depending on whether the power system is in surplus
or shortage of generation, which is hard to capture. In this
context, we propose a new Transformer-based model to assist
the short-term trading strategies of market players. The proposed
model offers high-performance probabilistic forecasts of real-time
prices while providing insights into its inner decision-making
process. Transformers rely on attention mechanisms solely com-
puted via feed-forward networks to explicitly learn temporal
patterns, which allows them to capture complex dependencies
such as regime switching. Here, we augment Transformers with
subnetworks dedicated to endogenously quantify the relative
importance of each input feature. Hence, the resulting forecaster
intrinsically provides the temporal attribution of each input
feature, which foster trust and transparency for subsequent
decision makers. Our case study on real-world market data of the
Belgian power system demonstrates the ability of the proposed
model to outperform state-of-the-art forecasting techniques, while
shedding light on its most important drivers.

Index Terms—Attention mechanism, deep learning, imbalance
price, explainable AI, multi-horizon forecasting, real-time elec-
tricity markets.

I. INTRODUCTION

PROVIDING correct price signals to market participants
is fundamental in modern competitive electricity markets

for achieving an affordable, reliable, and sustainable electric
power system [1]. Electricity Price Forecasting (abbreviated
EPF hereafter) contributes to that objective by supporting the
trading strategies of the various system actors, such as the
optimal bidding of wind power [2], the optimal self-scheduling
of generation companies [3], or arbitraging opportunities for
energy storage systems [4], [5]. Overall, electricity prices in
the day-ahead market have been well studied by the EPF com-
munity, with efficient approaches ranging from econometric
to machine learning methods – see for instance [6], [7] and
references therein. However, the increasing share of intermit-
tent, renewable-based energy sources in power systems tends
to increase the close-to-real-time balancing needs [8], so that
the real-time trading of electricity, and as a consequence, the
forecasting of real-time electricity prices, are currently gaining
strong momentum among the power systems community [9],
[10].
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The trading of real-time electricity differs according to the
market implementation [11], [12]. In US-styled pools, the real-
time electricity prices are defined using a locational marginal
pricing market, wherein energy deviations and operating re-
serves are settled at a unique price for each electrical node.
While in European markets, real-time electricity prices are
defined according to a zonal model and may refer to either
imbalance or balancing prices, which arises from the intrinsic
segmentation between energy and balancing markets. Bal-
ancing prices remunerate the “Balancing Service Providers”
for the actual activation of balancing reserves (e.g., the
automatic frequency restoration reserve), whereas imbalance
prices penalize any real-time energy deviations of “Balance
Responsible Parties” (abbreviated BRPs hereafter) from their
position in energy markets. Both prices are connected since
imbalance tariffs are based on the activation fees in the
balancing stage. Regardless of the market design, accurate
estimations of real-time electricity prices in a multi-horizon
setting are crucial for market players for either optimally
exploiting real-time arbitrage opportunities or reducing their
exposure to imbalance costs [13], [14]. The challenging nature
of this task is exacerbated by two fundamental causes: i)
the signal exhibits a regime-switching behavior, where it flips
from low- and high-price regimes depending on whether the
power system is in surplus or shortage of generation [15],
and ii) price spikes occur more frequently due to the market’s
small size and vulnerability to unexpected changes in oper-
ating conditions, e.g., outages or congestion of transmission
lines [16]. As both characteristics are common across the real-
time price signals, our case study considers the multi-horizon
prediction of imbalance prices in European markets without
loss of generality; see more details in Section II-A.

Despite these two challenges, the literature is still scarce
concerning the prediction of real-time electricity prices
compared to their day-ahead counterparts. Markov regime-
switching models are considered in references [15], [17], [18]
for capturing the real-time prices. Such models nest several
linear forecasters, each representing a specific regime of the
real-time electricity prices, for which transition probabilities
are computed based on a latent state variable (e.g., a lagged
observation of real-time electricity price or system imbalance).
Although limited by linear dependencies, the coefficients of
the forecasters can be used for attributing an importance value
for each corresponding input feature [15]. Besides, these mod-
els are also limited by the well-known Markov property, which
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states that the expected future regime state of the process only
depends on the current observation of the state variable. More
specifically, Olsson and Söder present a Markov-switching
seasonal auto-regressive moving average model in [17], while
they investigate the introduction of exogenous variables using
non-linear time series models in [19]. In the same vein,
Dimoulkas et al. apply a hidden Markov model for modeling
Nordic balancing prices [18], while Bunn et al. analyze
the predictability of British balancing prices using Markov
switching dynamic regression models [15]. Following a similar
reasoning, a seasonal auto-regressive moving average model
based on the activated balancing volume is proposed in [20],
and a Holt-Winters model conditioned by the sign of the net
imbalance volume is developed in [21]. The importance of em-
bedding balancing state information (e.g., lagged volumes of
activated balancing energy) in the forecasting models tends to
be confirmed by the benchmark analysis in [22], where models
without such information provide larger interval forecasts. This
observation is further highlighted in [23], which shows that
the net system imbalance volume has the highest explanatory
power when used with tree-based ensemble methods. Tree-
based ensemble methods are powerful forecasters, but their ex-
tension towards multi-horizon forecasting commonly requires
a novel model at each prediction step. Such a strategy prevents
the learning of time dependencies between outputs, which may
consequently produce completely unrelated forecasts over the
prediction horizon [24], [25]. In complement, references [26],
[27] focus solely on the net system imbalance volume, which
is then used to compute imbalance prices based on merit order
estimates of the balancing energy market. This approach has
recently gained interest since Transmission System Operators
(abbreviated TSOs hereafter) have made these merit order
estimates publicly available within the trend of improving
market transparency [28]. However, although the forecaster is
relieved from capturing the complex regime-switching behav-
ior of the real-time electricity prices, the simplifying market
hypotheses adopted for constructing the merit order estimates
are inevitably limiting the accuracy of the predicted real-time
prices.

Overall, the literature shows that capturing both the price-
regime switching behavior and spikes of real-time electricity
prices is a non-trivial task [29], [30]. Furthermore, even an
accurate predictive model may face barriers in terms of accept-
ability among the users’ community, especially if it behaves as
a black box and generates non-interpretable outcomes. Neural
networks are particularly prone to that phenomenon, where the
underlying reasoning is more complex to extract than simpler,
readily interpretable models – see e.g., [31]. In this line,
combining the predictive power of deep neural models with
interpretable features has attracted a high-level interest within
the machine learning community [32], [33]. Following [34],
interpretability can be defined as the ability of a model to
provide explanations in understandable terms to a human. The
scope can be global, i.e., interpreting the average behavior of
the model over the whole dataset, or local, i.e., explaining
a case-specific outcome of the model. Interpretability can
be integrated via two approaches: i) a post-hoc approach,
which consist in analyzing an already trained (black-box)

model by, e.g., interpretable local surrogates, gradient-based or
perturbation-based methods [35], and ii) an intrinsic approach,
in which the architecture of the model is directly designed with
interpretable components [36], [37]. For instance, the tree-
based ensemble methods used in [23] are able to provide the
global importance of each input feature, but they need to be
complemented with post-hoc methods for providing local in-
terpretations [38]. However, such post-hoc methods are limited
when using on multivariate time series as they do not consider
the temporal dependencies between input features [39]. On the
other hand, an interpretable attention-based recurrent neural
architecture is used in [40] for forecasting the grid imbalances.
Although the model has proven successful in a multi-horizon
setting, its interpretability does not allow to capture the relative
importance between between past observed and future known
inputs. In this direction, this work also develops a neural
network model with intrinsic interpretable components, but
with the ability to identify this key interaction between both
past and future horizons. The interpretability aspect of the
proposed model can be analysed both globally and locally.
The global analysis allows visualizing the most influential
input features and the most persistent temporal patterns, while
the local analysis shows the behavior of the model for case-
specific outcomes such as during a regime-switching event.

The proposed model is based on the Transformer neural
architecture, which shows an improved capture of long-range
dependencies between the elements of an input sequence.
Hence, Transformers tend to become the novel state-of-the-
art neural model in various tasks such as natural language
processing applications [41], [42]. By relying on attention
mechanisms solely computed via feed-forward neural net-
works, our model is able to capture distinct temporal patterns
of the input signal depending on the predicted price regime.
In addition, the model is augmented with subnetworks able
to provide direct insights on the relative importance of each
individual input feature [37]. Finally, as deep learning models
are known to be difficult to optimize and require careful tuning
of hyper-parameters, we leverage a normalization block to
improve the convergence and performance of the proposed
model [43]. The contributions of this paper are summarized
below:

• We present for the first time a Transformer-based model
for the multi-horizon probabilistic forecasting of real-time
electricity prices. More particularly, the model is trained
to predict a set of price quantiles, which are free of any
distributional assumption. We observe that the Transformer-
based attention mechanism enables the learning of distinct
temporal patterns of the input signal depending on the
predicted price regime. The effectiveness of our approach
is illustrated in a detailed case study using data from a real-
life power system.

• The proposed model is able to provide a global and lo-
cal interpretability analysis of the temporal attributions of
each input feature. To achieve that, the architecture of the
Transformer-based model is enriched with dedicated sub-
networks, which aim at computing the relative importance
between input features at each time step. The interpretability
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of our model serve a dual purpose: i) selecting endogenously
the most informative features without resorting to separate
data preprocessing steps, and ii) providing direct insights to
the user on which are the most important forecasting drivers
and how they are used temporally.

• Each non-linear transformation performed by the proposed
model is used in conjunction with a normalization block,
which reduces the vanishing gradient problem and improves
the information flow in deep neural models. This block is
composed of a layer normalization, a gated linear unit and
a residual connection. Results demonstrate that this added
block plays an important role in the improved performance
of the proposed model.

The remaining parts of the paper are organized as follows.
The real-time market framework and the forecasting model are
described in Section II. In Section III, performance measures
and benchmark methods are presented. The case study and the
evaluation of the proposed forecasting strategy, both in terms
of performance and interpretability perspectives, are discussed
in Section IV. Finally, Section V concludes the paper.

II. METHODOLOGY

In this section, the targeted real-time market framework
is firstly introduced. Then, we present an overview of the
proposed forecasting model, where the most dominant layers
of the neural architecture are depicted. Last, each neural
network layer and its associated functionality are detailed.

A. Real-Time Market Framework

We consider the favoured European real-time market seg-
ment dedicated to monetizing deviations from the energy
markets, i.e., the single price imbalance settlement. In this
market framework, the BRPs endorse the financial responsi-
bility of their real-time energy deviations, which are com-
puted based on their positions in energy markets. Hence, a
unique imbalance price is applied to all positive and negative
imbalance positions of BRPs at each imbalance settlement
period (typically of 15 minutes duration), which reflects the
operational balancing costs. More particularly, depending on
the net system imbalance state, the single imbalance price is
calculated whether as a function of the upward or downward
real-time balancing prices. This regime-switching behavior is
illustrated in Fig. 1 considering the Belgian power system. The
two regimes of the single imbalance price are considered: i)
a high-price regime (typically higher than the day-ahead elec-
tricity prices), which may describe a shortage of production at
the system level, and ii) a low-price regime (generally lower
than the day-ahead electricity prices), characterizing an excess
of production. In the rest of this paper, the term “real-time
prices” refers to imbalance prices.

B. Forecasting Model

The model is designed for generating multi-horizon proba-
bilistic forecasts of the real-time price λRT for each Imbalance
Settlement Period (abbreviated ISP hereafter) :

p
(
λRT
t0+1, ..., λ

RT
t0+τmax

|xht0−lmax
, ...,xht0 ,x

f
t0+1, ...,x

f
t0+τmax

)
(1)

High-price regime

Low-price regime

Fig. 1. The regime-switching behavior of the Belgian imbalance price on the
1st January 2019.

where t0 is the forecast creation time, lmax, τmax are re-
spectively indices determining the number of look-back and
look-ahead ISPs, xh. ∈ R

mh are time series observed, and
xf. ∈ R

mf are future information, e.g., the prices cleared at
the day-ahead stage or calendar information, already known
over the prediction horizon.

Many architectural variations of neural models were de-
veloped to process efficiently such a set of heterogeneous
inputs [44], [45]. Three major trends can be identified: i)
deeper architectures, when adequately designed, increase the
ability of the network to extract meaningful representation
from the raw data, ii) convolutional neural networks or re-
current neural networks – e.g., the Long Short-Term Memory
(abbreviated LSTM hereafter) – are efficient in learning local
spatio-temporal relationships, and iii) attention mechanisms,
which grant the model direct access to information on specific
time steps, enable an improved representation of long-term
dependencies.

In light of these recent advances, we propose a Transformer-
based model, which pursues high-quality probabilistic predic-
tions of real-time electricity price, while attaining interpretable
insights. The overall model is depicted in Fig. 2. Note that
layers in the same color share the same weights. In addition,
the notations FF-NL and FF-L stand for feed-forward networks
using respectively non-linear and linear activation functions,
while BLSTM refers to a Bi-directional LSTM network. At
the early stage, the mh look-back observed inputs and the
mf look-ahead known inputs are respectively processed by
two distinct variable selection subnetworks, which act as an
interpretable filter that allows the model to disregard any ir-
relevant inputs (Subsection II-D). The selected inputs are then
handled by BLSTMs, where both backward and forward time
correlations are locally captured (Subsection II-E), followed
by a FF-NL that computes an additional non-linear mapping
if required. For each time step of the prediction horizon,
the Transformer-based attention layer selectively identifies
the most salient past and future contextual information over
the conditioning range [t0 − lmax, t0 + τmax] in a single
vector representation (Subsection II-F). Finally, based on this
condensed representation, a direct multi-horizon strategy is
applied, which consists in outputting in one pass the real-time
price’s q-quantiles {λ̂RT

t0+τ,q,∀q ∈ Q} through two successive
non-linear and linear mappings. This strategy avoids error
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Fig. 2. The Transformer-based model.

accumulation (which is common in fully recurrent models)
by alleviating the need of recursively feeding the previously
predicted target, while fully making use of the parallel abilities
of hardware such as GPUs. In addition, throughout the model,
we repeatedly used normalization blocks (Subsection II-G) to
control the depth of the model and facilitating its training. All
the layers are trained in an end-to-end fashion, i.e., all layers
are jointly trained, which guarantees the consistency of the
framework.

C. Feed-Forward Networks

Feed-forward networks are used for either transforming a
n-dimensional input vector into a d-dimensional vector or
applying additional linear and non-linear mappings.

Let xin ∈ Rn be the input vector. The linear mapping of an
FF-L layer is defined as:

xout = xinW1 + b1 (2)

where xout ∈ Rd is the d-dimensional output vector, and W1 ∈
R
n×d and b1 ∈ Rd are parameters to be trained.
An FF-NL layer consists of two linear transformations, with

a non-linear activation function in between:
xout = f elu(xinW2 + b2)W3 + b3 (3)

where W2 ∈ Rn×d, W3 ∈ Rd×d, b2 ∈ Rd and b3 ∈ Rd are
parameters to be trained, and f elu is the Exponential Linear
Unit activation function, which acts as an identity function for
positive values and gets saturated for negative ones [46].

D. Variable Selection Layer

TSOs have the duty to publish a wide range of information
for promoting a transparent and non-discriminatory market
such as actual measurements (e.g., electrical load and power
production, which are here denoted by the superscript h), day-
ahead forecasts of renewable generation and electrical load
(denoted here by the superscript f ). Additional information,
such as the schedules of conventional generation and merit
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Fig. 3. Variable selection layer for the time step t0 − l.

order estimates of operational balancing prices, may also be
provided (also denoted by the superscript f ).

In the Belgian power system, besides calendar information,
we have at our disposal mh = 14 historical covariates xh:t0+1

and mf = 15 known future information xft0+1:. These inputs
are gathered in gh = 8 and gf = 6 groups as followed:
• the imbalance price (λh,RT ∈ R1).
• the net activated volume of balancing reserves (NRVh ∈ R1).
• the upward and downward balancing prices (λh,bal. ∈ R2).
• the physical cross-border energy flows with France and

Netherlands (φh ∈ R2).
• the produced and forecasted wind and photovoltaic

powers with their associated installed capacities
(P {h,f},renew. ∈ R

4).
• the produced and scheduled powers of conventional genera-

tors (P {h,f},conv. ∈ R3), composed of pump-hydro, gas and
nuclear units.

• the measured and forecasted electrical load of the grid
(L{h,f} ∈ R1).

• the day-ahead electricity prices (λf,DA ∈ R1).
• the merit order estimates of operational balancing

prices, i.e., the TSO expected prices corresponding
to different volumes of activated reserves
{−600,−300,−100, 100, 300, 600} MW (λf,bal. ∈ R6).
Note that the database was already cleaned once by the

TSO, which greatly facilitates the replacement of outliers. In
this work, a simple linear interpolation scheme is sufficient for
replacing them. In addition, to be enclosed in the non-linearity
region of the activation functions, the data are then min-max
normalized between [−1, 1] before entering the neural model.
The calendar information (x{h,f},cal. ∈ R

6) are categorical
variables characterizing working days, the day of the week, the
hour, the quarter hour, the month and the absolute position of
the time step. Overall, the set of historical covariates xh:t0+1 is
composed of {λh,RT, NRVh, λh,bal., φh, Lh, Ph,renew., Ph,conv.,
xh,cal.}, while the set of future known information xft0+1:

contains {Lf , P f,renew., P f,conv., λf,DA, λf,bal., xf,cal.}.
The level of relevance of the input variables for predicting

a target can be hardly anticipated. Hence, we train dedicated
subnetworks, i.e., the variable selection layers, jointly with
the model to filter out any irrelevant input. This process is
showcased in Fig. 3 for the past observed inputs xht0−1 at time
step t0−l. First, each group within the inputs xht0−l is mapped
into a d-dimensional vector, either linearly for the continu-
ous variables or through entity embeddings for the calendar
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information [47]. The entity embeddings learn to map each
calendar information to numerical features in a d-dimensional
space. In contrast to the one-hot encoding methodology, this
continuous representation identifies and leverages similarities
between time steps. Then, all the embedding vectors are
averaged in a unique d-dimensional vector that condenses all
the calendar information. The use of a common representation
space Rd throughout the model enables residual connections,
which facilitates its training (see Subsection II-G).

The vector Ξh
t0−l ∈ R

gh·d in Fig. 3 represents the con-
catenation of all the transformed inputs. Once non-linearly
transformed, this vector is used as a basis to compute the
feature importance variables ϑht0−l, framed in red in Fig. 3.
They are obtained via a feed-forward network with a softmax
function that outputs a vector of gh-dimension. The softmax
function ensures that the values of the output vector sum up
to 1 and be positive. The final d-dimensional input χh

t0−l
for the time step t0 − l is then obtained by combining each
transformed group of inputs, weighted by their corresponding
value in ϑht0−l. Hence, the elements of the vector ϑht0−l yields
a probability distribution of the relative importance of each
group in χh

t0−l, thereby providing interpretable outcomes (see
Table IV of Subsection IV-C).

E. Local Temporal Processing Layer

The input sequences χh,χf are then respectively processed
by two distinct BLSTM networks, whose internal represen-
tations are exchanged at the forecast creation time t0. The
BLSTM is composed of two LSTM networks that process the
input sequence in both positive and negative time directions,
which allows to capture both forward and backward local time
dependencies. Without loss of generality, the output of the
BLSTM for the time step t0 − l is expressed as:

hforward
t0−l = Hh,LSTM (χht0−l,h

forward
t0−l−1), (4a)

hbackward
t0−l = Hh,LSTM (χht0−l,h

backward
t0−l+1 ) (4b)

υht0−l =
hforward
t0−l + hbackward

t0−l
2

(4c)

where HLSTM is the composite LSTM function [48] and
{hforward

t ,hbackward
t } are the internal states of the LSTMs. The

output υht0−l is an average of both forward and backward inter-
nal states for keeping the same d-dimensional representation
throughout the model.

Overall, the roles of the BLSTMs are to provide i) an
appropriate inductive bias for the time ordering of the input
sequence, and ii) awareness of the surrounding elements in
the input sequence. Leveraging both time position and local
context have proved to be key elements for computing the
attention scores in the Transformer-based attention layer [49].

F. Transformer-based Attention Layer

Attention mechanisms are computing layers that provide an
abstract representation of an input sequence by dynamically
weighting its different time steps. The process is showcased
in Fig. 4 for the time step t0 + τ , where the sequence
φ{h,f} ∈ RT×d (with T = lmax+τmax) is obtained from υ{h,f}

using FF-NL layers. The sequence φ{h,f} is linearly trans-

Past information Future information

…

FF-LFF-L FF-LFF-L FF-L

Element-wise Multiplication

……

…

FF-LFF-L FF-LFF-L

… … … …

Fig. 4. The Transformer-based attention layer for the time step t0 + τ .

formed in three different vectors, i.e., a query Qt0+τ ∈ R
d,

keys K ∈ R
T×d and values V ∈ R

T×d, via FF-L layers.
The abstract representation At0+τ ∈ Rd is then obtained by
weighting the values V with attention scores αt0+τ ∈ R

T ,
obtained by quantifying the level of matching between the
query Qt0+τ and the keys K:

At0+τ = a(Qt0+τ ,K)V (5)

where a(.) is the matching function.
Following [41], we use the scaled dot-product attention as

the matching function a(.):

a(Qt0+τ ,K) = softmax
(Qt0+τK√

d

)
(6)

The dot-product yields the similarity of vector Qt0+τ with
regard to the keys K. Higher values of the dot-product
correspond to higher relevance between the given key and
the proposed query. The scaling factor

√
dk is introduced to

reduce the magnitude of the dot-product. Then, the softmax
function renders the attention scores αt0+τ as a probability
distribution over all keys K with regards to Qt0+τ . The
magnitude of the attention scores αt0+τ provide direct insights
on the contributions of each element of the input sequence
φ{h,f} to predict the real-time price at t0 + τ .

The attention mechanism provides two keys benefits: i) the
model is able to directly access to the most salient contextual
information for each time step of the prediction horizon, and
ii) it allows to learn regime-specific temporal dynamics by
using distinct attention score patterns for each regime. These
two benefits are respectively showcased in Fig. 10 and Fig. 11
of Subsection IV-C.

G. Normalization Block

For controlling the depth of the model and facilitating the
backpropagation of gradients, we use a normalization block
whenever a non-linear transformation is performed. This is
illustrated in Fig. 5 for the time step t0 − l when using
the BLSTM. The normalization block is composed of three
components, i.e., a layer normalization [43], a gated linear
unit [37] and a residual connection [50].

Layer normalization fixes the mean and variance of the
distributions of the inputs at each neural layer, which allows re-
ducing internal covariate shift during training [43]. Practically,
for this example, the output vector of the layer normalization is

computed as χLNorm,h
t0−l = γ

χh
t0−l−µ
σ +β, in which µ, σ are the
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Non-linear layer (E.g., BLSTM)

Residual connection

Fig. 5. Illustration of the normalization block applied to the BLSTM for the
time step t0 − l.

mean and standard deviation of the elements in χht0−l , and γ,
β are the gain and bias parameters to be trained, respectively.

The gated linear unit allows the model to control the
magnitude of the non-linear transformation of the previous
layer. The gated linear unit, which takes as input χNL,h

t0−l , yields:

χGL,h
t0−l = fσ(W 4χNL,h

t0−l + b4)� (W 5χNL,h
t0−l + b5) (7)

where fσ is the sigmoid function, W {4,5} ∈ Rd×d, b{4,5} ∈
R
d are weights and biases, � is the element-wise Hadamard

product and d is the dimension of the model. If necessary, the
gated linear unit could suppress the non-linear transformation
by outputting values all close to 0.

Residual connections allow the model to learn residual
functions, which have been proved to be easier to optimize
in deeper architecture [50]. The residual connection simply
performs an identity mapping, which is added to the output
of the gated linear unit (neither extra parameters nor compu-
tational complexity is added).

The gain of performance of using the normalization blocks
is analyzed in Fig. 8 of Subsection IV-B.

H. Output layer

The simultaneous prediction of the q-quantiles
λ̂RT
t0+τ,q,∀τ ∈ {1, ..., τmax},∀q ∈ Q, with Q the set of

quantiles to predict, are achieved by a FF-L layer at each time
step. To produce these quantiles, the model is trained using
the smooth approximation of the pinball loss [27], where the
Huber norm H(.) is introduced for differentiability issues at
the origin [51]. The loss function is computed as:

EHt0+τ =
∑
q∈Q

{
q ·H(λRT

t0+τ , λ̂
RT
t0+τ,q) λ̂RT

t0+τ,q < λRT
t0+τ

(1− q) ·H(λRT
t0+τ , λ̂

RT
t0+τ,q) λ̂RT

t0+τ,q ≥ λ
RT
t0+τ

(8)
Quantile crossing issue may arise when fitting separately

different quantiles. In this paper, we conduct naive rearrange-
ment of the predicted q-quantiles in ex-post, i.e., we sort
in ascending order the q-quantiles at each time step of the
prediction horizon after they are predicted [52]. Note that this
procedure is also performed for the benchmark.

In this work, a mini-batch mode is preferred for training
the model, which consists in updating the weight and bias
parameters based on the loss function of subsets of samples
(i.e., 96 samples representing a daily sequence in our case
study), thereby providing a compromise between the batch
and online learning modes. The gradient descent procedure is
carried out with the Adam optimizer, with β1 = 0.9, β2 =

0.98 and ε = 10−9 [41], which automatically and individually
adapts the learning rate δ for each network parameter in order
to escape local optima during the training phase. The upper
limit of the learning rate δ varies over the number n of mini-
batches, according to the formula:

fLR(.) =
δ√
d
min

(
1√
n
,

n

n1.5warmup

)
(9)

where d is the dimension of the model, while δ = 0.001 and
nwarmup = 4000 are hyperparameters that determine the highest
learning rate achieved and the number of steps to reach it,
respectively.

III. PERFORMANCE MEASURES AND COMPETING
METHODS

This section introduces the skill scores for evaluating the
probabilistic forecasts and competing methods.

A. Performance Measures

The quality of probabilistic forecasts is dominated by two
concepts, i.e., reliability and sharpness. Reliable forecasts
ensure that the forecast probabilities are consistent with the
observed ones, while sharper forecasts are able to tightly
encapsulate the uncertainty around the variable of interest. In
this paper, we assess the overall quality of the probabilistic
forecasts based on three skill scores.

First, we use the Continuous Ranked Probability Score
(abbreviated CRPS hereafter), defined as:

ECRPS
t0+τ =

∫
x

(
F (x)− θ(x− λRT

t0+τ )
)2

dx (10)

where F (.) is the Cumulative Distribution Function (abbre-
viated CDF hereafter) defined by the predicted q-quantiles
λ̂RT
t0+τ,q , and θ(.) is the Heaviside step function, taking the

value 1 for x ≥ λRT
t0+τ and 0 otherwise.

Eq. (10) is a quadratic measure of the difference between
the predicted CDF and the observation, which is null in
case of a perfect probabilistic forecast [53]. It measures both
reliability and sharpness, and has the same unit than the
variable of interest. As we evaluate non-parametric predictive
densities, the CRPS score can be obtained using numerical
integration [54].

Then, we also use the pinball loss EQt0+τ weighted across
all q-quantiles of interest:

EQt0+τ =
∑
q∈Q

qmax
(
0, λRT

t0+τ − λ̂
RT
t0+τ,q

)
+

(1− q)max
(
0, λ̂RT

t0+τ,q − λ
RT
t0+τ

) (11)

where a lower EQt0+τ score indicates a better probabilistic
forecast.

The ECRPS
t0+τ and EQt0+τ scores are complemented with

the Winkler score, which quantifies the forecast quality for
different prediction intervals. For a prediction interval of
(1− β)100%, the Winkler score EWt0+τ is defined as:

EWt0+τ =

εt0+τ , Lt0+τ ≤ λRT
t0+τ ≤ Ut0+τ ,

εt0+τ + 2(Lt0+τ − λRT
t0+τ )/β, λRT

t0+τ < Lt0+τ ,

εt0+τ + 2(λRT
t0+τ − Ut0+τ )/β, λRT

t0+τ > Ut0+τ ,
(12)
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where Lt0+τ = λ̂RT
t0+τ,β/2

and Ut0+τ = λ̂RT
t0+τ,1−β/2 are the

lower and upper bounds of the prediction interval defined by
the confidence level β, and εt0+τ = Ut0+τ − Lt0+τ is the
interval width.

If a real-time price realization λRT
t0+τ is within the predicted

interval [Lt0+τ , Ut0+τ ], the Winkler score EWt0+τ is a direct
measure of sharpness. Otherwise, a penalty term, whose value
depends on the severity of the forecast error, is added for
reflecting the deficiency in reliability.

The Winkler score (encompassing both reliability and sharp-
ness aspects) is additionally supported by i) the Prediction
Interval Coverage Probability (abbreviated PICP hereafter),
which empirically indicates the coverage probability of the
prediction intervals [55], and ii) the Prediction Interval Nor-
malized Average Width (abbreviated PINAW hereafter), which
measures the width of the prediction intervals [56].

The PICP is calculated through counting the covered real-
time price realization λRT

t0+τ between the lower Lt0+τ =

λ̂RT
t0+τ,β/2

and upper Ut0+τ = λ̂RT
t0+τ,1−β/2 bounds of the

prediction interval defined by the confidence level β. The
counting of the PICP is computed as follows:

EPICP
t0+τ =

{
1, if λRT

t0+τ ∈ [Lt0+τ , Ut0+τ ]

0, if λRT
t0+τ /∈ [Lt0+τ , Ut0+τ ]

(13)

When averaged over the test set, the PICP should be as
close as possible to the nominal value (1 − β)100% of the
associated prediction interval. A lower PICP than the nominal
value indicates a deficiency in reliability for the prediction
interval, which may lead to ex-post disappointments for the
subsequent decision maker. Note that a higher PICP than the
nominal value simply notifies that the prediction interval is
more reliable than anticipated.

However, an excess of reliability may produce very large
prediction intervals, which may be of no use for subsequent
decision makers as they convey too many uncertainties. Hence,
the sharpness of the prediction interval is also an important
aspect for determining its level of informativeness. This aspect
can be measured via the PINAW. The PINAW is given by:

EPINAW
t0+τ =

(Ut0+τ − Lt0+τ )
λ

RT − λRT
(14)

where λ
RT

, λRT are the maximum and minimum values of real-
time prices over the test set, normalizing EPINAW

t0+τ in percentage.
The closer to 0, the sharper and thus more informative is the
prediction interval.

In this paper, the Winkler score, PICP and PINAW are
calculated for β = {0.1, 0.5, 0.9}.

B. Competing Methods

The proposed model is compared with a wide range of
forecasting techniques. First, two naive methodologies are
implemented:
• A step-wise averaging model (Step-Avg), where the real-

time price distribution of each forecasting time step is
computed based on the average of all past observations
corresponding to this specific period of the day.

• A probabilistic generalization of persistence (Pers) based
on a random walk model. The forecast assumes a Gaus-

sian distribution where the mean is given by the last
available real-time price realization, and the variance is
determined by exponential smoothing of previous squared
errors [57].

Six state-of-the-art models in time series forecasting are also
implemented:
• An Auto-Regressive Moving Average (ARMA) model,

for which we compute prediction intervals assuming
that the residuals are uncorrelated and normally dis-
tributed [58].

• A quantile regression forest (QRF), i.e., a bagging-based
ensemble method, in which the outcomes of independent
regression trees are used for estimating the conditional
distribution [59].

• A gradient boosting regression tree (QGBRT) trained with
the quantile loss. New regression trees are sequentially
created to predict the residuals of the previously generated
ones [60].

• A deep feed-forward neural network (S-FFNN), where
several hidden layers are stacked on top of each other.
The model is trained using the smooth approximation of
the pinball loss.

• The traditional sequence-to-sequence model (Seq2Seq)
based on LSTM networks [27]. The model is trained
using the smooth approximation of the pinball loss.

• The Bahdanau-based sequence-to-sequence model (B-
Seq2Seq) proposed in [40], which is also trained using
the smooth approximation of the pinball loss.

It should be noted that the ARMA model is only fed
with past imbalance price observations, while the machine
learning models, i.e., QRF, QGBRT, S-FFNN, Seq2Seq, and
B-Seq2Seq, have access to the same input data as the pro-
posed Transformer-based model. In addition, we conduct a
hyperparameter optimization to identify the optimal model
complexity of each forecaster. This is achieved through a
random search, where the same number of iterations is used
across all benchmarks [61]. While this benchmark provides
a representative snapshot of currently existing time series
forecasting methods, this is by no means all-encompassing.
Indeed, for instance, gaussian processes are also used for
time series prediction, e.g., in [62], but their scalability for
larger datasets is still under research [63]. In addition, hybrid
boosting-bagging algorithms for tree-based ensemble methods
is also present in the literature [64]–[66], but their develop-
ment is still limited for probabilistic time series forecasting
problems.

We also perform an ablation study, in which we investigate
the loss in performance of the proposed model (denoted by
Ref) when removing important parts of its architecture.
• Ref-Att is the Ref model without the Transformer-based

attention layer.
• Ref-VarSel is the Ref model where the variable selection

networks are removed.
• Ref-Bidir is the Red model where the sequential infor-

mation fed to the attention mechanism is injected via
sinusoidal functions of different frequencies [41] instead
of the BLSTM networks.
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• Ref-NB is the Ref model without the normalization
blocks.

IV. CASE STUDIES

We conduct the case study on publicly available data
obtained from the website of Elia [28], i.e., the Belgian
Transmission System Operator, on an Intel® Core™ i7-3770
CPU @ 3.4 GHz with 16 Gb of RAM. The variable of interest
is the Belgian imbalance price λRT. The thirteen forecast-
ing models are implemented using the scikit-learn package,
statsmodels package, and TensorFlow package in Python 3.6.
The data spans from 2016-1-1 to 2019-12-31, for a total of
four years of data. Specifically, the first three years of data
(from 2016-1-1 to 2018-12-31) are used to train and validate
the models with a ratio of 85%-15%. Hence, the parameters of
the models are updated using 85% of these three years, while
the remaining 15% is used for tuning the hyper-parameters
(i.e., the model parameters are not updated based on the signal
errors of the validation set). Once trained and validated, the
forecasting models are then benchmarked using the entire year
2019 (test set) for assessing their probabilistic performance,
which consists of approximatively 35,000 novel (unseen) input
conditions. Each quarter-hourly step of the database is used as
a forecast creation time t0. A prediction horizon of 4 hours is
selected, which corresponds to τmax = 16 time steps, and we
compute the 5th, 15th, 25th, 35th, 45th, 50th, 55th, 65th,75th,
85th, 95th percentiles of the target distribution (i.e., |Q| = 11)
for each of these time periods.

The final configurations of the probabilistic forecasting
methods (along with their search spaces) are:

• ARMA model, which considers 12 lagged values and 2
previous values of past errors, i.e., the autoregressive part
p = 12 and the moving average part q = 2. The search
ranges of {p, q} are respectively {1, 2, 3, 4, 8, 12, 16, 20}
and {0, 1, 2, 3, 4}.

• QRF model, with a population of NRF = 500 trees fully
extended, and a ratio of maximum features per split of
0.05. The look-back window is set to lmax = 32. The
search range of the ratio of maximum features considered
at each split is {0.05, 0.1, 0.2, 0.5, 0.9, 1}, while the one
of lmax is {4, 8, 12, 16, 24, 32}.

• QGBRT model, with a learning rate of 0.1, a maximum
depth of 8 per tree, and a ratio of maximum features per
split of 0.2. The number of boosting stages is determined
by using early stopping, whose upper limit is fixed at
100. The look-back window is also set to lmax = 32. The
search ranges of additional hyperparameters, i.e., maxi-
mum depth and learning rate, are respectively {4, 8, 12}
and {0.1, 0.01, 0.001}.

Concerning neural models, the search ranges of hyper-
parameters are: i) the number of processing units by layer,
which is included in {6, 12, 24, 48}, ii) the range of the look-
back window, which is contained in {4, 8, 12, 16, 24, 32}, and
iii) the number of hidden layers for the S-FFNN model, which
varies between [1,3]. The initial learning rate of the Adam
optimizer is set to the default value 10−3. For maximizing the
generalization capability of neural models, the early stopping

TABLE I
NUMBER OF PARAMETERS, TRAINING AND INFERENCE TIMES OF

PROBABILISTIC FORECASTING METHODS.
Models Parameters Training Time [s] Inference Time [s]
ARMA 15 120 0.01

QRF τmax ·NRF · 37k τmax · 4200 0.2
QGBRT τmax · |Q| · 22k τmax · |Q| · 180 0.4
S-FFNN 58.5k 36.4 0.04
Seq2Seq 95.5k 725 0.1

B-Seq2Seq 41k 1150 0.12
Ref 63k 1750 0.15

criterion is also adopted. This criterion stops the optimization
process when no performance improvement is apparent on
the validation set, and selects the final model parameters
based on the minimum error of the validation set. The final
configurations of the neural models are:

• S-FFNN model, with a look-back window of lmax = 4 and
2 hidden layers of 48 processing units.

• Seq2Seq model, with 64 Long Short Term Memory process-
ing units, and a look-back window of lmax = 24.

• B-Seq2Seq model, with 32 Long Short Term Memory
processing units, and a look-back window of lmax = 24.

• Ref model, where the dimension d is set to 12. The look-
back window is lmax = 32.

Concerning the number of parameters, the training and
inference times, Table I provides a brief overview for each
probabilistic forecasting model. Note that the number of
parameters for tree-based ensemble models (i.e., QRF and
QGBRT) is given by their number of nodes. Concerning neural
models, the S-FFNN model with 2 hidden layers requires
less training time than the other neural variants. The Seq2Seq
model has the greater number of parameters, which can be
explained by its higher number of processing units (i.e., 64)
compared to the Ref model (i.e., 12) and the B-Seq2Seq
model (i.e., 32). Interestingly, the S-FFNN and Ref models
have more parameters than the B-Seq2Seq model. This may
come from the nature of the attention mechanisms, where
the attention scores from the Ref model are solely computed
based on FFNNs, while the ones from B-Seq2Seq model are
essentially extracted from hidden states of recurrent neural
networks (which is thus less demanding in terms of parameters
for long input sequences). For tree-based ensemble models,
QRF necessitates a different model per prediction step τ , while
QGBRT trains a different model per prediction step τ and
forecasted quantile q. As a consequence, this augments the
training time of these models for a long forecasting horizon.
Overall, the training time of all time series forecasting models
still remains manageable with a standard configuration of a
computer (with a peak of 18 hours for the τ -QRF models in
our experiments). Finally, we can observe that the inference
time for generating new predictions is lower than one second
for all prediction models, which renders them operational for
close-to-real-time purposes.

A. Forecast Evaluation

Fig. 6 illustrates the probabilistic forecasts obtained using
the proposed model for the 14th April 2019 at 06H00 and
the 14th September at 16H00. It can be observed that the
real-time price signal is properly embedded by the predic-
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(a) 14th April 2019 at 06:00 (b) 14th September 2019 at 16:00
Fig. 6. Multi-horizon probabilistic forecasts of λRT on the 14th April 2019 at 06:00 (Fig. 6a) and on the 14th September 2019 at 16:00 (Fig. 6b).

TABLE II
EVOLUTION OF THE CRPS SCORES [ C/MWH] OVER THE ENTIRE FORECASTING HORIZON FOR ALL THE MODELS, WHERE TOT. IS THE AGGREGATION OF

THE CRPS SCORES.
Models Tot. t0 + 1 t0 + 2 t0 + 3 t0 + 4 t0 + 5 t0 + 6 t0 + 7 t0 + 8 t0 + 9 t0 + 10 t0 + 11 t0 + 12 t0 + 13 t0 + 16

Step-Avg 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2
Pers 23.2 18.47 20.93 21.61 21.4 22.59 23.43 23.74 23.74 24.24 24.43 24.41 24.34 24.34 24.72

ARMA 20.92 17.17 19.22 19.86 20.24 20.84 21.18 21.35 21.44 21.59 21.62 21.63 21.66 21.67 21.79
QRF 18.67 15.69 17.27 17.75 18.02 18.67 18.92 19.01 19.08 19.16 19.17 19.23 19.27 19.35 19.43

QGBRT 16.82 13.07 15.18 15.86 16.37 16.89 17.24 17.32 17.45 17.5 17.4 17.36 17.47 17.57 17.47
S-FFNN 16.77 14.41 15.64 15.87 16.15 16.63 16.83 17.46 16.93 17.07 16.96 17.21 17.12 17.33 17.74
Seq2Seq 16.81 15.39 16.36 16.71 16.9 16.98 17.05 17.06 17 16.96 16.94 16.91 16.94 16.93 16.98

B-Seq2Seq 16.34 14.7 15.88 16.14 16.25 16.42 16.51 16.53 16.52 16.49 16.48 16.46 16.52 16.54 16.74
Ref 15.6 12.88 14.5 15.2 15.54 15.79 15.98 16.05 16.04 16.02 15.95 15.97 15.95 15.9 15.98

TABLE III
THE PINBALL LOSS [C/MWH] AVERAGED OVER THE ENTIRE PREDICTION
HORIZON (TOT.), THE FIRST SIX TIME STEPS {t0 + 1, ..., t0 + 6} AND THE
LAST TEN TIME STEPS {t0 +7, ..., t0 +16} OF THE PREDICTION HORIZON.

Models Tot. {t0 + 1, ..., t0 + 6} {t0 + 7, ..., t0 + 16}
Step-Avg 125.18 125.18 125.18

Pers 158.93 140.74 169.85
ARMA 130.87 123 135.6

QRF 120.27 112.9 124.7
QGBRT 112.62 103.89 117.85
S-FFNN 114.9 107.96 119.07
Seq2Seq 112.41 106.98 115.67

B-Seq2Seq 112 106.4 115.36
Ref 107.32 99.67 111.9

tion intervals. Interestingly, larger prediction intervals en-
compass both price regimes, while narrower intervals, e.g.,
{λ̂RT

t0+τ,0.35,λ̂RT
t0+τ,0.65}, attempt to predict the future price

regime.
Table II provides the CRPS scores of the different models

at each prediction step, which are averaged over the entire
test set. The best individual scores are denoted in bold figures.
We observe that the proposed model (Ref) provides the lowest
CRPS scores over the entire prediction horizon, while the other
Machine Learning (ML) methods, i.e., B-Seq2Seq, S-FFNN,
Seq2Seq, QGBRT, and QRF, are the second-best models. One
reason explaining the gap between ML methods and the other
methods is that only ML methods fully leverage all the avail-
able input information. This tends to indicate that including
exogenous variables in the forecasting models has a positive
impact on accuracy. Interestingly, the naive Step-Avg model
achieves an overall better performance than the autoregressive
models, i.e., the Pers and ARMA models. It is aligned with

previous observations [22], [40] where naive forecasts can be
hard to beat for real-time market variables. The Pers model
has the worst performance within the benchmark. By simply
propagating the most recent past realization, the model does
not have the ability to infer the most likely future price-regime
of the real-time prices. Even if it includes a larger look-back
window of past realizations, the ARMA model is unable to
perform better than the naive Step-Avg model. Overall, it can
also be observed that the CRPS scores for all models (except
for the Pers) saturate when the prediction horizon is longer
than one hour and a half, i.e., for t0 + 6.

Concerning the ML models, we can see that the neural
models, i.e., the Ref, B-Seq2Seq, Seq2Seq, and S-FFNN, tend
to outperform the tree-based ensemble methods (QRF and
QGBRT) over the last time steps {t0 + 7, ..., t0 + 16}. This
can be explained by the fact that different models are defined
independently at each prediction step t0 + τ for tree-based
ensemble methods, whereas the parameters of the neural mod-
els are shared over the prediction horizon [24]. The S-FFNN
model directly generates all the probabilistic predictions, while
the final layer of other neural variants is iterated over the
entire forecasting horizon. By sharing the parameters in their
output layer, the neural models are able to better capture
temporal dependencies between outputs. However, it can be
observed that the tree-based ensemble methods remain very
competitive over the first six time steps and that the QGBRT
model performs even better than the B-Seq2Seq over the first
three time steps. We also observe that QRF performs worse
than QGBRT, which can be explained by the fact that QRF
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Step-Avg Pers ARMA QRF QGBRT S-FFNN Seq2Seq B-Seq2Seq Ref

(a) Average EWt0+τ at β = 0.1 (b) Average EWt0+τ at β = 0.5 (c) Average EWt0+τ at β = 0.9

(d) Average EPINAW
t0+τ

at β = 0.1 (e) Average EPINAW
t0+τ

at β = 0.5 (f) Average EPINAW
t0+τ

at β = 0.9

(g) Average EPICP
t0+τ

at β = 0.1 (h) Average EPICP
t0+τ

at β = 0.5 (i) Average EPICP
t0+τ

at β = 0.9

Fig. 7. Average Winkler score, PINAW and PICP of all models over the test set for β = {0.1, 0.5, 0.9} at each prediction step.

gives an estimate of the conditional distribution from which
quantiles are extracted, whereas the q-quantiles of QGBRT are
directly computed through the minimization of the quantile
loss. Besides, the S-FFNN model performs worse than the B-
SeqSeq model and our proposed model, which shows the im-
portance of aligning the architecture of the neural network with
the temporal characteristic inherent to time series forecasting
problems. Finally, both intrinsic interpretable neural models,
i.e., Ref and B-Seq2Seq, provide the best averaged scores,
which suggests that adding interpretable components within
their architecture do not hinder their prediction performance.

In addition, Table III provides the pinball loss, which is
averaged over i) the entire prediction horizon (Tot.), ii) the
first six time steps {t0 + 1, ..., t0 + 6}, and iii) the last ten
time steps {t0 + 7, ..., t0 + 16} of the prediction horizon.
Concerning the pinball loss, the observations that are drawn
in Table II are even more pronounced. Overall, the Ref model
achieves a higher accuracy in each column compared to the
other forecasting models. The Seq2Seq and B-Seq2Seq models

outperform the QGBRT model over the whole horizon, but
QGBRT is the second best model for the first six time steps.
In this Table, it can be also observed that the S-FFNN model
performs less than the QGBRT, B-Seq2Seq and B-Seq2Seq
models.

To complement these results, Fig. 7 showcases the Winkler
score, PINAW and PICP of all models for the confidence levels
β = {0.1, 0.5, 0.9} over the entire prediction horizon. The
confidence levels β = {0.1, 0.5, 0.9} correspond to the predic-
tion intervals {λ̂RT

t0+τ,0.05, λ̂RT
t0+τ,0.95}, {λ̂

RT
t0+τ,0.25, λ̂RT

t0+τ,0.75},
{λ̂RT

t0+τ,0.45, λ̂RT
t0+τ,0.55}, respectively. The first row concerns

the Winkler scores (i.e., encompassing both the sharpness and
reliability aspects), the second row indicates the PINAW (i.e.,
the sharpness aspect) and the last row covers the PICP (i.e.,
the reliability aspect). For a larger interval at β = 0.1, the
metrics of the ML models are very close to each other and
are significantly below the other models’ metrics. For such a
large interval, the models provide predictions encompassing
both the low- and high-price regimes (in a narrower fashion
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Fig. 8. CRPS scores for the ablation analysis over the entire prediction
horizon.

for the ML models), but none of the models are able to
differentiate the price regime. Fig. 7d, indicates that the Ref
model provides the sharpest interval {λ̂RT

t0+τ,0.05,λ̂RT
t0+τ,0.95},

while Fig. 7g shows that the level of reliability of 90% is met.
We can also observe in Fig. 7g that the QRF and S-FFNN
models have a deficit of reliability for this prediction interval.
Fig. 7b shows the Winkler scores at β = 0.5. In this case, the
metrics of Ref and QGBRT are practically equal, while the B-
Seq2Seq and Seq2Seq perform worse over the first time steps.
We also observe that the performance of the QRF model starts
to deteriorate for narrower prediction intervals. Indeed, the
QRF model provides a very sharp prediction interval but with
low reliability (purple curves in Fig. 7e and 7h). In contrast, the
red curves in Fig. 7e and 7h show that the Ref model manages
to produce one of the sharpest interval, while attaining a level
of reliability above the nominal value of 50%. Concerning the
narrowest interval at β = 0.9 (Fig. 7c), the Winkler scores
are more stratified. The Ref model clearly outperforms all
other models, which is highly valuable since the 45th and
55th quantiles provide direct information on the price-regime
of the real-time prices. This is highlighted by Fig. 7f and
7i, where the Ref model provides one of the sharpest and
most reliable prediction interval. More particularly, Fig. 7f
indicates that the Ref and B-Seq2Seq are the two best models
in terms of sharpness for this prediction interval. Note that
the QRF model provides a very sharp interval but with too
low reliability. Fig. 7i indicates that the Ref model provide
the most reliable prediction interval, with a level of reliability
above the nominal value of 10%. This tends to demonstrate
that the proposed model is able to better detect the likely future
regime of real-time prices than the other forecasting models.

B. Ablation Analysis

Fig. 8 shows the average CRPS scores over the entire fore-
casting horizon resulting from the ablation analysis. First, the
Ref-NB model achieves the worst performance. This highlights
the importance of the normalization blocks, which adapt the
depth of our proposed model to the dataset and facilitate the
backpropagation of gradients. This is illustrated in Fig. 9,
which shows the validation losses of the Ref and Ref-NB
models during the training procedure. It can be seen that the

Fig. 9. Validation losses of the Ref model with and without the normalization
blocks during the training procedure.

Ref model achieves a lower validation loss than the Ref-NB at
the time the training is stopped with early stopping. Returning
to Fig. 8, the non-attentional model, denoted Ref-Attn, is the
second-worst model in terms of accuracy, which highlights
the benefits of this alignment procedure that provides direct
connections with relevant time steps of the surrounding hori-
zon. This observation tends to reflect the importance of the
attention mechanism to capture different temporal patterns for
differentiating the different regimes of price. Interestingly, we
see that injecting the sequential information with sinusoidal
functions of different frequencies (instead of the BLSTM) also
worsens the results during the first quarter hours, but provides
better forecasts for the remaining prediction horizon. Finally,
the metrics of the models Ref-Varsel and Ref are comparable
over the entire forecasting horizon. This suggests that the
main interest of adding the variable selection layers consists
in providing more interpretable outcomes.

C. Interpretability

In this Section, we analyse the temporal attributions of
the input features given by our model both globally and
locally. Firstly, we quantify the global feature importances
by analysing the variable selection weights described in Sec-
tion II-D. Then, we visualize the persistent temporal patterns
based on the attention weights explained in Section II-F.
Finally, we illustrate the behavior of our model for a case-
specific outcome, where we show the difference in the tem-
poral patterns of the most dominant drivers during a regime-
switching event.

1) Global Analysis
The interpretable outcomes of the variable selection layers

are shown in Table IV. Practically, {ϑh, ϑf} are selection
variables that are aggregated for each feature across the entire
test set. Results show that the proposed model extracts only
a subset of key inputs (highlighted in bold) that intuitively
play a significant role in the predictions. Regarding the past
available information, the lagged values of the real-time prices
are critical as expected. In addition, the net activated regulation
volume and the calendar information also emerge as important
drivers for the model. Remarkably, the lagged values of
renewable generation bring an additional explanation power
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TABLE IV
AVERAGED REPRESENTATION OF VARIABLE SELECTION WEIGHTS OVER

BOTH PAST (UPPER TABLE) AND FUTURE (LOWER TABLE) DATA.

λh,RT NRVh λh,bal. φh Lh Ph,renew. Ph,conv. xh,cal.

ϑ
h 0.27 0.26 0.05 0.03 0.01 0.11 0.05 0.22

Lf P f,renew. P f,conv. xf,cal. λf,DA λf,bal.

ϑ
f

0.03 0.04 < 0.01 0.02 0.86 0.05

Fig. 10. Averaged temporal attention of the model over the entire prediction
horizon for both past and future conditionning ranges

to the model. For the known inputs in xft0+1:, the most
dominant driver is the day-ahead electricity price. However, in
our experimental set-up, the merit order proxies of operational
balancing reserves provided by the TSO, i.e., λf,bal., play only
a minor role in the proposed model.

Next, we analyze persistent temporal patterns, which are
often key to understanding the time-dependent relationships
between inputs-outputs. To do so, we average the attention
weights over the entire test set, which produces the averaged
attention patterns αt0+τ depicted in Fig 10. In this plot, each
contour line perpendicular to the ‘conditioning range’ axis
represents the intensity of the model’s temporal attention for
each time step of the prediction horizon. Over the whole
prediction horizon, it can be seen that the model is mostly
focused on the time steps between t0 − 7 and t0 + 16. Such
outcomes can be expected since the real-time price is a signal
which includes quick and abrupt changes.

2) Local Analysis
Finally, we conduct a case-specific interpretable analysis in

Fig. 11 for the prediction time steps {t0 + 1, t0 + 5, t0 + 13}
of the probabilistic forecasts on 14th April 2019 at 06H00.
Recalling Fig. 6a, the forecaster predicts a low-price regime
at t0 + 1, then, it introduces a regime switch at t0 + 5 in
order, finally, to output a high-price regime distribution at
t0+13. Fig. 11 clearly demonstrates the dependency between
the predicted regimes and the different temporal importance
patterns of the most dominant drivers. Concretely, the temporal
importance of each dominant driver is computed as %it0+j =

ϑit0+j ·αt0+j , ∀i ∈ {λ
h,RT,NRVh,Ph,renew,xh,cal.,λf,DA}, ∀j ∈

{−lmax, ..., τmax}. It can be observed that the proposed model
tends to rely on the day-ahead prices for predicting a low
imbalance price, while it focuses on past information for
predicting a high-price regime. These observations are further

corroborated by the importance spikes occurring on the con-
ditioning steps {t0, t0−7, t0−21} in Fig. 11b and 11c, which
correspond to past time steps characterized by a high-price
regime (see Fig. 6a).

V. CONCLUSION

The paper proposes a novel Transformer-based model for in-
terpretable, high-performance multi-horizon probabilistic fore-
casting of real-time electricity prices. Such prices are impor-
tant market signals for market players aiming at reducing their
imbalance costs or maximizing balancing actions. However,
their predictions are highly complex since the prices are
characterized by regime switching behavior and spikes.

In this context, we leverage recent advances in deep neu-
ral networks to provide a new, well-suited approach for
predicting real-time electricity prices. In a detailed case
study, we illustrate that the proposed model is able to out-
perform state-of-the-art forecasting methods, with a respec-
tive decrease of 4.5% in the CRPS metrics compared with
the first benchmark method, i.e., Bahd-Seq2Seq. In addi-
tion, a global analysis of the interpretable outcomes allow
highlighting both the most important features, i.e., the set
{λh,RT,NRVh,Ph,renew,xh,cal.,λf,DA}, and the features’ tempo-
ral window of the proposed model (from t0 − 7 to t0 + 16).
Finally, a case-specific interpretable analysis demonstrates the
ability of the proposed model to capture different temporal
attention patterns of each input according to the price-regime
predicted.

Two complementary lines of research can be envisaged
for future works. First, interpretability in probabilistic time
series forecasting deserves more in-depth studies. For instance,
an extensive benchmark study investigating both post-hoc
and inherent interpretable probabilistic time series forecasting
models could provide interesting insights on their usefulness
for providing human interpretable outcomes. Second, the ap-
plication of such interpretable time series forecasting models
in other market frameworks could be also envisaged. Indeed,
this will ensure of their efficiency in the presence of other
market dynamics, while providing valuable outcomes about
their respective drivers.
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